MgO-based cement as an inorganic binder for hemp hurds composites
DOI:
https://doi.org/10.5755/j01.ct.67.1.15000Keywords:
hemp hurds, composite, physico-mechanical properties, MgO-cement matrixAbstract
The aim of this work is to study the suitability of the MgO-based cement as an inorganic binder instead of the traditional Portland cement into composites with an organic filler material such as hemp hurds. MgO-based cements, in contrast to Portland cement which requires high temperatures (about 1450 °C) during its production, demand less energy (the maximum temperature for the controlled calcination to obtain MgO from magnesium carbonate is 750 °C), becoming a more efficient cement from the environmental point of view.
The first part of this paper summarises the results of physico-mechanical properties such as density, thermal conductivity, water absorbability and compressive strength of hardened hemp hurds composites that make this material useful and interesting mainly for its thermal insulating properties which can be improved by hemp hurds treatment processes. The second part of this work is devoted to the characterization of the MgO–cement matrix in the 28-day hardening stage. The MgO-based cement as an alternative binder appears to be suitable for the preparation of biocomposites based on hemp hurds.Downloads
Published
2016-08-01
Issue
Section
TECHNOLOGY OF INORGANIC MATERIALS